Integration of TEM and Magnetics

2 Magnetics

Method
1. Data Collection
Airborne geophysical data were collected in 1999 by UTG Geophysics (Perth) over a large area in the south-central part of the Towers goldfield. The data included magnetic and electromagnetic surveys. The aeromagnetic data have a 2' x 2' grid and a 4 km x 4 km footprint. The EM data were acquired using a 20 kHz frequency, with a 0.5 m x 0.5 m grid and a 10 m x 10 m opening. The elevation of the sensor was roughly 50 m.

A high-resolution ground magnetic survey was completed in 2008 and 2010 in the Towers area. This survey was performed by NGG using a 2' x 2' grid and a 3 km x 3 km footprint. The data were collected in a loop configuration with a 3 m x 3 m grid and 10 m x 10 m opening. The elevation of the sensor was roughly 50 m.

2. Processing
Our interpretation focuses on the vertical derivatives (following the algorithms of Annan, 1974). The TEM data were acquired using the geophysical methods described above and processed using the algorithms of Annan (1974). An inductive response in an arbitrary background can be obtained using the algorithms of Annan (1974). An inductive response in an arbitrary background can be obtained using the algorithms of Annan (1974). The data indicate three magnetic units, each with a different susceptibility. These units were interpreted as different geologic units.

3. Results
The magnetic data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

3 Ground TEM

Method
1. Surveying
TEM surveys were performed in 1999 with a 20 kHz frequency, with a 0.5 m x 0.5 m grid and a 10 m x 10 m opening. The elevation of the sensor was roughly 50 m.

2. Recording
TEM surveys were performed in 1999 with a 20 kHz frequency, with a 0.5 m x 0.5 m grid and a 10 m x 10 m opening. The elevation of the sensor was roughly 50 m.

3. Results
The TEM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

4 TEM vs. Magnetic Survey

Comparison of the TEM data with the magnetic data indicates a strong correlation. The TEM data indicate a high magnetic susceptibility in the Towers area, which correlates with the magnetic data. The TEM data also indicate a low magnetic susceptibility in the Towers area, which correlates with the magnetic data.

5 Borehole TEM

The TEM data from the boreholes indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

6 Conclusion
The results of the magnetometric survey indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units. The results of the TEM survey indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

References
1. Magnetics
2. TEM
3. Borehole TEM
4. Ground TEM
5. Discussion

Contact
L. J. Davis & R. W. Groom, Petros Eikon Incorporated

Summary
Integration of TEM and Magnetics

Introduction
The Towers goldfield is located in northwest Queensland, Australia. The gold ore occurs in quartz-sulfide veins, which are hosted in granitoids. The granitoids are interpreted as Paleozoic granitoids. The granitoids are interpreted as Paleozoic granitoids.

The CT goldfield is located in northwest Queensland, Australia. The gold ore occurs in quartz-sulfide veins, which are hosted in granitoids. The granitoids are interpreted as Paleozoic granitoids.

The structure of the EM data is determined by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.

The structural interpretation of the EM data is limited by the magnetic anomaly. The EM data indicate that the magnetic units are composed of multiple structures. These structures are interpreted as geologic units.